If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2-6x-4.2=0
a = 1.5; b = -6; c = -4.2;
Δ = b2-4ac
Δ = -62-4·1.5·(-4.2)
Δ = 61.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-\sqrt{61.2}}{2*1.5}=\frac{6-\sqrt{61.2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+\sqrt{61.2}}{2*1.5}=\frac{6+\sqrt{61.2}}{3} $
| 2w+-14=6w+6 | | 3u+20=6u-7 | | 3/2x6=9 | | 51-5c=21 | | 2=23-3f | | 4(4x+6)÷2=3(5x-2) | | 4f-1=27 | | X-8y=50 | | 15x-6=2x+4 | | v^2+9v+10=0 | | 3(p+5)+4((p-2)=4(p+6) | | 5x2+10x+2=0. | | 7x•12=9x+22 | | x²-8x+16=(x-4)² | | x²+2x-15=(x+3)(x-5) | | 0=6/7x+6 | | 2x+4+70=180° | | 0.4x+5=10 | | 4x-10=3x+8=13 | | -3/5y=2/3=-10/9 | | x12.3=7.05 | | 2z/4=15-2z | | -33=3(x9) | | 10^(2x+1)=1000 | | 4x+-6=3x+2=x+12 | | 3h-6/6=8(3h-4)/4 | | 5-10t=-35 | | 2e+6=9 | | -2z=-11 | | 12x+2=-9 | | 5(8x-10)=15(6x+10) | | 2x-4/5=13 |